Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties
نویسندگان
چکیده
Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Na(v)). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Na(v) function and lipid bilayer properties. We examined the effects of these agents on Na(v) in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Na(v) and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Na(v) function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia.
منابع مشابه
Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity.
At submicromolar concentrations, capsaicin specifically activates the TRPV1 receptor involved in nociception. At micro- to millimolar concentrations, commonly used in clinical and in vitro studies, capsaicin also modulates the function of a large number of seemingly unrelated membrane proteins, many of which are similarly modulated by the capsaicin antagonist capsazepine. The mechanism(s) under...
متن کاملClinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties.
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidenc...
متن کاملBlockade of Sodium Channels and Transmitter Uptake Systems in Synaptosomes by Local Anesthetics: Lipid-Mediated or Direct Influence?
Procaine, trimecaine and tetracaine inhibit the active transport of norepinephrine and choline in rat brain synaptosomes with half maximal effects at lCr-6.10~ mol/1. Depolarization with veratrine (0.1 mg/ml) or 50 mmol/'l KC1 resulted in neurotransmitter release. Tetrodotoxin (5.10 7 mol/1) or charged tertiary amines (10~ mol/1) prevented the veratrine effect but not that of KC1. Microviscosit...
متن کاملAmphiphile regulation of ion channel function by changes in the bilayer spring constant.
Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e.g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function by altering the energetic cost (DeltaG(bilayer)) of bilayer deformations associated with protein confo...
متن کاملConcentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach.
To gain insights into the molecular level mechanism of drug action at the membrane site, we have carried out extensive molecular dynamics simulations of a model membrane in the presence of a volatile anesthetic using a coarse-grain model. Six different anesthetic (halothane)/lipid (dimyristoylphosphatidylcholine) ratios have been investigated, going beyond the low doses typical of medical appli...
متن کامل